
A Game-based Animation Tool to Support the Teaching of Formal
Reasoning

Flávio Soares Corrêa da Silva Filipe Corrêa Lima da Silva

LIDET – Laboratory of Interactivity and Digital Entertainment Technology

Department of Computer Science, University of São Paulo
Rua do Matão, 1010 – São Paulo (SP) BRAZIL 05504-090

{fcs,filipe}@ime.usp.br

Abstract

When teaching formal reasoning in Computer Science
courses – e.g. in an Artificial Intelligence or in a
Formal Logics course – it is challenging to find
compelling practical examples to motivate the students.
We introduce in the present article a system to provide
students with animations in virtual environments of the
interactions of multiple agents, in which the interaction
protocols and the behavior of the agents are specified
as logical theories.

The system introduced here has been primarily
designed as a teaching aid for undergraduate students
enrolled in disciplines such as Artificial Intelligence
and Formal Logics. We nevertheless envisage different
applications for this system, such as a visualization
tool for research development in Artificial Intelligence,
and a high level specification tool for prototyping of
complex computer games.

Keywords: artificial intelligence, games in education

Authors’ contact:
Universidade de São Paulo, Depto. De

Ciência da Computação. Rua do Matão, 1010

– São Paulo (SP) Brazil 05504-090 –

email: {fcs, filipe}@ime.usp.br

1. Introduction

When teaching formal reasoning to Computer Science
students – e.g. In an Artificial Intelligence or in a
Formal Logics course – it is challenging to find
compelling practical examples to motivate the students.
It is common that lecturers resort to examples related
to safety critical systems – for which formal
specification and formal verification are a basic
requirement – or to very large systems, such as some
modern operating systems – whose design and
implementation becomes unmanageable without the
disciplined employment of formal methods – or else to
widely used systems, such as search engines and
systems to support web-based transactions (e-
commerce, e-banking, etc.) – which must be
permanently available, highly stable and highly
reliable, and for which, as a consequence, a provably
predictable behavior is most desired.

Even though these examples can be very convincing, it
is unlikely that students have the opportunity to
experiment with any of them during their courses. It
can be frustrating to some students to end up working
with highly abstract and/or highly simplified problems
that stay quite distant from the motivating examples
shown to them.

In the present article we propose artificial agents
populating virtual environments as an alternative field
of application of formal reasoning techniques. The
growing sophistication of software systems for digital
entertainment – most remarkably pushed by the
computer games industry and interactive digital
television – has made these systems akin to two of the
classes of examples mentioned above – they are large
and complex, as well as very widely used. Hence, we
shall see a growing utilization of formal methods to
support their design and development. Moreover, these
systems can be scaled down to fit into classroom
examples and exercises, and hence students can have
the feel of working on such systems as well as the
satisfaction of seeing their own work completed and
finalized as a full working system. Furthermore, given
an appropriate interface, these systems provide for
truly entertaining experiences, thus offering to the
students immediate reward for their efforts.

We introduce a software system specifically designed
to support the teaching of formal reasoning techniques
to Computer Science undergraduate students. The
system has been primarily designed as a teaching aid
for undergraduate students enrolled in disciplines such
as Artificial Intelligence and Formal Logics. We
nevertheless envisage different applications for this
system, such as a visualization tool for research
development in Artificial Intelligence, and a high level
specification tool for prototyping of complex computer
games.

The use of computer games development to teach
computer science has been advocated by many
researchers. Among the most remarkable initiatives,
we can mention the Alice project [DANN ET ALLI,
2006], the MUPPETS project [BIERRE ET ALLI, 2006]
and the Age of Computing project [NATVIG AND LINE,
2004] for introductory courses. Game development is
an engaging activity for Computer Science students,
because the end result of their work is appealing and

they can have quick feedback of their efforts to design
and implement a software system.

There are indications that artificial intelligence and
multiagent systems can improve significantly the
quality of the interaction with computer games,
contributing to the design and implementation of more
believable computer-controlled characters [FORBUS ET

ALLI, 2001]. Moreover, computer games have been
proposed as the ideal testbed for artificial intelligence
techniques [LAIRD AND VAN LENT, 2000].

Based on these considerations, we believe that a
system for prototyping of interactions among several
computer-controlled agents, in which the interaction
protocols and the behavior of agents could be specified
using a high level language – e.g. as close as possible
to first order logic – can be a useful tool.

We have developed a virtual world in which computer-
controlled characters interact according to what is
specified in logical theories written as PROLOG
programs.

In section 2 we describe the general architecture of our
system. In section 3 we present a sample application, in
which a single agent interacts with the environment
looking for the shortest feasible path between its
present location and a goal location. In section 4 we
briefly describe some potential applications of our
system in the classroom. Finally, in section 5 we
present our conclusions and proposed future work.

The present article is a follow up to the project
presented in [SILVA AND CORRÊA DA SILVA, 2005].

2. General System Architecture

Our system acts as a server that orchestrates the
interactions between the 3D Engine, the PROLOG
Engine and the student’s PROLOG client code (Figure
1). We’ve decided to use the Ogre open source 3D
engine [STREETING 2006], and the open source SWI
PROLOG engine [WIELEMAKER 2006] to develop the
system.

Figure 1: Application Architecture

Ogre is a scene-oriented 3D engine. It is written in
C++ and it is designed to facilitate the development of
applications that require hardware 3D acceleration.
Ogre abstracts away the details to use the graphical
libraries DirectX and OpenGL, and can be compiled in
different platforms, including Windows, Linux and
MacOS. Ogre is not a game engine; rather it is a
generic solution for real time rendering. It is an

extensively and well documented open source project,
and counts on a large and enthusiastic community of
users and developers.

SWI PROLOG is one of the most widely used open
source PROLOG implementations. It provides very
good quality interpreter and compiler for the PROLOG
language, wrapped in a high quality programming
environment.

Both Ogre and SWI PROLOG are available under
LGPL license.

The SWI PROLOG has a critical feature that allows us
to embed the PROLOG engine as a DLL into a C
application, thus allowing us to delegate calls to it
inside the C code. As an example, we can load a
PROLOG code in C with the code snippet presented in
Figure 2:

Figure 2: A code snippet for loading a PROLOG code file
inside a C++ application using an embedded SWI PROLOG

engine

This snippet loads the someprologcode.pl file
into memory and into the PROLOG engine instance.
Now we can use the services that are exposed by the
engine to query the loaded code using the PROLOG
unification mechanism and dynamically add and retract
facts or rules to the engine instance. This way we can
effectively delegate computing from the server to the
engine.

The server and the PROLOG client code must
cooperate through the enforcement of a ‘contract’. That
is, the server will expose some functionality for the
client code to use when developing the agent’s logic.
The functionality of the server can be used in the client
code through the writing of PROLOG predicates with
specific signatures. It’s the client’s responsibility to
write the predicates exactly as the server expects.

In our case, we want to give the client the possibility of
controlling an agent that lives in a 3D world. As an
example of interaction, a possible functionality
exposed by the server can be driving the agent through
the 3D world. The server will load the PROLOG client
code and will try to unify a specific predicate that
instantiates a list of ordered nodes. This list
corresponds to the path that the agent must travel
through to reach his goal. We’ll see this process in
detail in the next section.

On the server we have built an infrastructure to deal
with the problem of orchestrating the system’s
components. The class diagram is shown in Figure 3.

1 PlTermv pt(1);

2 pt[0] = “someprologcode.pl”;

3 PlQuery q = PlQuery(“consult”, pt);

4 q.next_solution();

3. Path Finding as a Logical Problem

Consider a robot in an environment as depicted in
Figure 3. The robot has information about its present
location (as a pair of coordinates), and receives a goal
location (i.e. a second pair of coordinates). To simplify
the computation of locations and the formulation of
location-related problems, we assume that the
environment is discrete, and locations are given based
on a square grid. Our proposed problem – to the robot
– is to find the shortest path between the present
location and the goal location.

Figure 3: A robot finding the shortest path between its
present location and a goal location

This problem can be formulated in many different
ways, depending on the language and the formalism to
be emphasized during a lecture presentation. For
example, we can formulate it as a problem in first order
logic:

Given a set of axioms that specify the legal

movements of the robot, two axioms stating the

present location and the goal location of the

robot, a set of axioms to capture the intended

meaning of a path between present and goal

locations (namely, a list of connected locations

with the present location as first location and

the goal location as last location), and the

formalization of the notion of length of a path

(namely, the length of the list representing the

path), find a proof for the following first order

sentence: there exists a path p0 between present

and goal locations, such that for all paths pi

between the same present and goal locations,

the length of pi is greater than or equal to the

length of p0.

These axioms can be encoded in a PROLOG program.
Clearly, we are interested in a constructive proof, since
we would like not only to know that there exists a path
with the desired properties, but also what this path is.

This problem becomes more interesting if we can add
some walls to the environment, thus building a maze
for the robot to traverse on its way to find the shortest
path between present and goal locations. One such
maze can be presented as in Figure 4. These walls are
constraints to the legal movements of the robot, and
hence can be logically represented as some additional
axioms.

Figure 4: A robot traversing a maze to find the shortest path
between its present location and a goal location

Finding the shortest path between two points in a plane
containing a maze can be explored in many different
ways in different disciplines within a Computer
Science course: it can be used to illustrate important
issues e.g. in the design and analysis of algorithms,
first order logic, formal software design and
implementation, and artificial intelligence.

This problem can become much more compelling if the
students have the opportunity to appreciate the
“practical” results of their work. Our system allows the
logical theory that characterizes the problem to be
partially specified through interactions with the virtual
world inhabited by the robot – namely, the present and
goal locations and the geometry of the maze can be
drawn directly in the graphical representation of the
world. If the constructive proof is successful – i.e. if
there exists a shortest path between the intended
locations – the shortest path triggers an animation in
which the robot walks from its present location to its
goal.

It is left to the lecturer to specify what events in the
virtual world update the logical theory ruling the
behavior of the agents in the environment, as well as
what theorems in the logical theory trigger animations
in the virtual world. The lecturer can then propose to
his/her students the formulation and implementation
(as PROLOG programs) of algorithms / executable
specifications / logical theories to connect axiomatic
theories with constructive proofs of specified theorems
that generate corresponding relevant animations.

Figure 5: Class Diagram of the System

In our example, whenever a block is added to a cell in
the grid to constitute a maze, a PROLOG fact is added
to the theory, of the form:

obstacle(node(X, Y)),

which indicates that the node on position X, Y of the
grid is an obstacle.

In order to select a goal location in the grid, the user
has to click on the desired spot on the grid. This adds a
PROLOG fact to the theory, of the form:

goal(node(X, Y)),

 which indicates that the node(X, Y) is the goal node of
the agent. The present location of the robot is passed
through the PROLOG goal clause of the form

findpath(From, Path),

which is triggered whenever a new goal location is
selected. Here From is the robot’s current position in
the form node(X, Y). Path will represent the
instantiation of a list of nodes.

Depending on the logical theory that is implemented in
the rest of the PROLOG program, a path is found
connecting the present location with the goal location.
This path is then passed to the animation engine, which
effectively takes the robot from its present location to
the goal location. Then the cycle can be restarted:
blocks can be added or deleted from the maze, the last
goal location becomes the new present location, a new
goal location can be selected, the PROLOG goal clause
is triggered, a new path is generated and the robot
walks from present location to goal location.

We provide the class diagram of the system in figure 5.
The invocation of the client code happens on a
concrete subclass of PathFindStrategy.

4. Virtual Worlds in the Classroom

The simulation described in section 3 certainly opens
up for interesting opportunities for lectures in AI
courses. But while it is interesting to have a PROLOG
interface to program a virtual agent, the system is not
limited to simulate an environment with only one. We
can have multiple agents dwelling in this virtual
scenario.

A simulation with multiple virtual agents brings
important problems into the system. A first
consequence is the problem of how do you say to do
server which set of predicate maps to which agent in
the simulation in the client code.

For example, if we have two types of agents in the
environment and we would like each one of them to
have different algorithms for path finding, we’d have
to design two different signatures for the
findpath(From,Path) predicate. This happens
because the PROLOG engine loads different code files
into the same program space while each agent instance
must have its own scope, or view of the world.

Thus, even if we have two exactly equal robot agents,
according to the proposed scenario in section 3, we
would have to change the predicates because each of
the robots must have its own goal predicates. For
example, we could use a goal predicate of the form:

goal(node(X, Y), AgentIdentifier),

and we would have to change the findpath
predicate implementation to deal with the new
parameter.

The second consequence is that the dynamism brought
by new agents into the environment has to be taken
into account by the student when he is designing his
logic. A shortest path found by a computation few
seconds ago has a chance of not being the shortest path
anymore as of now because of the new position
assumed by other agent in the nearby surroundings.

The third consequence is that dynamic possibilities of
collision come into play allied with the problem of
correctly managing the continuity and discrete aspects
of the environment. The animation aspect of the
simulation is continuous, the agent will incrementally
move from square to square, frame by frame. But the
agent, and hence the student coding his behavior, sees
the world as a grid formed by squares, a discrete
perception. This brings synchronization problems
when dealing with collision between many agents.

The collision problem is illustrated in figure 6: the
agent a1 calculated his path p1 from square s1 to s8,
while the agent a2 calculated his path p2 from square
s6 to s4. We can see clearly a possibility of collision
between the two agents on the square s5, depending on
their individual speeds. Neither of the agents knows
about this possible collision because they do not
precisely know each other trajectories.

Figure 6: Multiple Agents Collision Problem

We can also have one square discarded by an agent
calculating his path, because the square is currently
occupied by other agent. To illustrate this, we can look
at figure 7, and assume that agent a1 and a2 have the
same speed. We can see that even though the square s5
will be available by the time the agent a1 arrives,
because of the path p2 chosen by a2, agent a1 will not
be able to calculate his path p1 due to the temporarily
square s5 occupied by a2.

Figure 7: Multiple Agents livelock problem

This situation has the ingredients for a livelock, where
agent a1 and a2 keep changing their positions and
effectively blocking each other way.

5. Conclusions and Future Work

In the previous section, we exposed the problems that
arise when turning our system into a multiple agent
simulation environment. The next step in our work is
to work on these problems with a concrete example,
that we think it is interestingly enough to be taken to
the classroom. That would be the problem of the sheep,
the shepherd and the starving wolf.

In this scenario we have three types of agents and each
one has one specific long term goal. The objective of
the shepherd is to take the sheep from one corral on the
side of the scenario to the other, while trying to protect
the sheep from the wolf. The objective of the sheep is
trying to survive the wolf. The objective of the starving
wolf is to survive, according to the food chain.

This allows for some interesting interactions among
the students. We could have one group of students to
code the logic for the shepherd, and other group coding
the logic for the wolf. We could explore
communication problems between the sheep, and also
the problem of walking in formation.

We have shown that our system poses as an interesting
approach for teaching AI because it builds a bridge
between the algorithms and its application with a real
example. With the multi-agent version we hope that the
system turns out to be a great tool for educators to use
in AI courses in order to build a motivational learning
environment.

Acknowledgments

This work has been partially funded by Microsoft
Research.

References

BIERRE, K., VENTURA, P., PHELPS, A., EGERT, C. Motivating
OOP by Blowing Things Up: an Exercise in Cooperation
and Competition in an Introductory JAVA Programming
Course. ACM SIGCSE Workshop. USA, 2006.

DANN, W., COOPER, S., PAUSCH, R. Learning to Program with
Alice. Prentice-Hall, 2006.

FORBUS, K., MAHONEY, J., DILL, K. How Qualitative Spatial
Reasoning can Improve Strategy Game AIs. AAAI
Spring Symposium on AI and Interactive Entertainment.
2001.

LAIRD, J. E., VAN LENT, M. Human-level AI's Killer
Application: Interactive Computer Games. Invited talk,
AAAI Conference. 2000.

NATVIG, L., LINE, S. Age of Computers: Game-based
Teaching of Computer Fundamentals. ACM SIGCSE
Bulletin, v. 36(3), pages 107-111. 2004.

SILVA, F. C. L., CORRÊA DA SILVA, F. S. Um Ambiente
Virtual Baseado em Jogos para o Aprendizado de
Inteligência Artificial. IV Simpósio Brasileiro de Jogos
para Computador e Entretenimento Digital. Brasil, 2005.

STREETING, S. OGRE: Object Oriented Graphics Rendering

Engine. http://ogre3d.org. 2006.

WIELEMAKER, J. SWI Prolog. http://swi-prolog.org.
2006.

